Social Icons

Pages

jeudi 17 décembre 2015

Useful Facts About Diffusion Coatings

By Marci Nielsen


The operation and application of metal components is done in diverse environments. The variance in the environments is of great importance because some of the environments have diverse impacts on components. Corrosive environments and high temperatures for instance can be very damaging. Adverse environments impact functionality, longevity, and beauty of components. As such, in an attempt to reduce or eliminate the effects, diffusion coatings were invented. The purpose of these coatings is protecting substrates from being ruined by adverse environments. The information below discusses the process and how it offers protection to substrates.

The process through which a diffusion coating is applied on a metal component is referred to with the same name, diffusion coating. The process takes place in environments with very high temperatures inside a controlled chamber. This process involves activating various metals such as cobalt, nickel, and iron thermally. During the process, the metal component that needs to be coated is cleaned using various methods such as abrasive blasting to remove all kinds of external materials that may affect bond formation with the coating.

After proper cleaning has been done, the component is placed inside the container and the coating material added. The container is then completely sealed and placed into a furnace, which may be in the form of a chamber. The temperature of the furnace is then raised to very high levels in the range of 380 to 425 degrees Celsius.

When certain temperatures are attained within the aforementioned range, diffusion occurs to the metal. This makes it to make an alloy with the substrate. The nature of the substrate and the kind of metal used dictate how much time this process can last. However, most processes last from two hours to four hours. The substrate must be continuously turned throughout the process to achieve equal thickness.

The smoothness of the resultant coating is high while the thickness if uniform. Thicknesses can be varied to suit different functions. However, 15-80 micrometers is the normal range of thickness. The coating resembles the metal used in color. Iron, cobalt, chromium, aluminum, and silicon are some among the commonest metals in use. Various metals such as iron, steels, cobalt, and nickel can be coated.

The coating is resistant to erosion, oxidation, and reaction with air, water, and other substances. A lot of reliability, durability, and strength is achieved in components that are needed in critical functions. Pump impellers, power generation constituents, gave valves, and components or gas turbines engine like vanes, blades, and cases are examples of parts that usually get coated through this method.

This process is highly employed in industrial settings than it is applied in residential settings. In fact, very few equipment in homes need or have components coated this way. The process has been in use for long now, and since its invention, it has been modified severally. Modification are aimed at making it perfect in terms of the methods and technologies used.

Modern day furnaces have a lot of improvements in the form of features aimed at increasing efficiency and functionality. Today it is possible to achieve very thin coatings that are very strong and effective at eliminating corrosion. The automotive industry is particularly known for using this technology.




About the Author:



Aucun commentaire:

Enregistrer un commentaire

 

Sample text

Sample Text

Sample Text

 
Blogger Templates